A Frame Bundle Generalization of Multisymplectic Momentum Mappings
نویسنده
چکیده
We construct momentum mappings for covariant Hamiltonian field theories using a generalization of symplectic geometry to the bundle LV Y of vertically adapted linear frames over the bundle of field configurations Y . Field momentum observables are vector-valued momentum mappings generated from automorphisms of Y , using the (n + k)-symplectic geometry of LV Y . These momentum observables on LV Y generalize those in covariant multisymplectic geometry and produce conserved field quantities along flows. Three examples illustrate the utility of these momentum mappings: orthogonal symmetry of a Kaluza-Klein theory generates the conservation of field angular momentum, affine reparametrization symmetry in time-evolution mechanics produces a version of the parallel axis theorem of rotational dynamics, and time reparametrization symmetry in time-evolution mechanics gives us an improvement upon a parallel transport law.
منابع مشابه
ar X iv : m at h - ph / 0 11 10 40 v 1 2 1 N ov 2 00 1 A Frame Bundle Generalization of Multisymplectic
This paper presents generalized momentum mappings for covariant Hamiltonian field theories. The new momentum mappings arise from a generalization of symplectic geometry to LV Y , the bundle of vertically adapted linear frames over the bundle of field configurations Y . Specifically, the generalized field momentum observables are vector-valued momentum mappings on the vertically adapted frame bu...
متن کاملMultisymplectic Geometry, Variational Integrators, and Nonlinear PDEs
This paper presents a geometric-variational approach to continuous and discrete mechanics and field theories. Using multisymplectic geometry, we show that the existence of the fundamental geometric structures as well as their preservation along solutions can be obtained directly from the variational principle. In particular, we prove that a unique multisymplectic structure is obtained by taking...
متن کاملMultisymplectic Theory of Balance Systems and the Entropy Principle
In this paper we are presenting the theory of balance equations of the Continuum Thermodynamics (balance systems) in a geometrical form using Poincare-Cartan formalism of the Multisymplectic Field Theory. A constitutive relation C of a balance system BC is realized as a mapping between a (partial) 1-jet bundle of the configurational bundle π : Y → X and the dual bundle similar to the Legendre m...
متن کاملMultisymplectic geometry, covariant Hamiltonians, and water waves
This paper concerns the development and application of the multisymplectic Lagrangian and Hamiltonian formalism for nonlinear partial differential equations. This theory generalizes and unifies the classical Hamiltonian formalism of particle mechanics as well as the many pre-symplectic 2-forms used by Bridges. In this theory, solutions of a partial differential equation are sections of a fibre ...
متن کاملMultisymplectic Theory of Balance Systems, I
In this paper we are presenting the theory of balance equations of the Continuum Thermodynamics (balance systems) in a geometrical form using Poincare-Cartan formalism of the Multisymplectic Field Theory. A constitutive relation C of a balance system BC is realized as a mapping between a (partial) 1-jet bundle of the configurational bundle π : Y → X and the extended dual bundle similar to the L...
متن کامل